一种天然气发动机的燃烧控制方法及控制系统

实用新型 · 2020-04-23
申请号:CN202010034279.0 申请日:20200114 公开号:CN110848035A 公开日:20200228 授权公告号:CN110848035B 授权公告日:20200421 申请人地址:261061 山东省潍坊市高新技术产业开发区福寿东街197号甲 国家/省市:37(山东) 代理机构:11227 主分类号:F02D19/10 代理人:李带娣 申请人:潍柴动力股份有限公司 当前权利人:潍柴动力股份有限公司 发明人:谭旭光;佟德辉;王晓燕;李志杰;许晓颖;张强;李国祥 分类号:F02D19/10;F02D41/30 范畴分类:28B; 简要说明:本发明公开了一种天然气发动机的燃烧控制方法及控制系统,该控制方法包括以下内容:根据天然气发动机当前工况参数,判断天然气发动机的运行工况并计算天然气发动机该工况下所需天然气和引燃柴油的总喷射量;当怠速或低负荷时采取直喷扩散燃烧模式;当中等负荷时采取天然气均质混合活性控制压燃模式;当高负荷工况时,配置所述总喷射量成三部分:压燃天然气喷射量、引燃柴油喷射量和扩散燃烧天然气喷射量;依次喷入燃烧腔室;本发明的天然气发动机的燃烧控制方法根据发动机负荷工况不同划分为三种燃烧方式,大大提高了天然气的热效率和动力性,碳烟生产量大大降低,尾气中的PM和PN远低于柴油机,可以达到严格的EuroⅥ排放标准,无需碳烟后处理系统,降低天然气系统的生产成本。 主权利要求:1.一种天然气发动机的燃烧控制方法,其特征在于,该控制方法包括以下内容:根据天然气发动机当前工况参数,判断天然气发动机的运行工况并计算天然气发动机该工况下所需天然气和引燃柴油的总喷射量;当所述运行工况处于怠速或低负荷时,采取直喷扩散燃烧模式,所述直喷扩散燃烧模式是指在压缩上止点位置喷射柴油,然后再喷射天然气;当所述运行工况处于中等负荷时,采取天然气均质混合活性控制压燃模式,所述天然气均质混合活性控制压燃模式是指进气门关闭后喷射天然气,上止点前喷射柴油;当所述运行工况处于高负荷工况时,配置所述总喷射量成三部分:压燃天然气喷射量、引燃柴油喷射量和扩散燃烧天然气喷射量;在所述天然气发动机压缩冲程初期,将所述压燃天然气喷射量的天然气喷射于燃烧腔室与其内部空气混合;在压缩上止点附近位置或较大柴油喷射提前角将所述引燃柴油喷射量的柴油喷射至所述燃烧腔室引燃预先喷射的天然气,隔预定时间后再将所述扩散燃烧天然气喷射量的天然气喷射至所述燃烧腔室;其中所述压缩冲程初期是以自进气门关闭曲轴至少转过10度时位置为始点。 当前状态:1 代理机构:北京集佳知识产权代理有限公司 11227 权利要求,1.一种天然气发动机的燃烧控制方法,其特征在于,该控制方法包括以下内容:根据天然气发动机当前工况参数,判断天然气发动机的运行工况并计算天然气发动机该工况下所需天然气和引燃柴油的总喷射量;当所述运行工况处于怠速或低负荷时,采取直喷扩散燃烧模式,所述直喷扩散燃烧模式是指在压缩上止点位置喷射柴油,然后再喷射天然气;当所述运行工况处于中等负荷时,采取天然气均质混合活性控制压燃模式,所述天然气均质混合活性控制压燃模式是指进气门关闭后喷射天然气,上止点前喷射柴油;当所述运行工况处于高负荷工况时,配置所述总喷射量成三部分:压燃天然气喷射量、引燃柴油喷射量和扩散燃烧天然气喷射量;在所述天然气发动机压缩冲程初期,将所述压燃天然气喷射量的天然气喷射于燃烧腔室与其内部空气混合;在压缩上止点附近位置或较大柴油喷射提前角将所述引燃柴油喷射量的柴油喷射至所述燃烧腔室引燃预先喷射的天然气,隔预定时间后再将所述扩散燃烧天然气喷射量的天然气喷射至所述燃烧腔室;其中所述压缩冲程初期是以自进气门关闭曲轴至少转过10度时位置为始点。2.根据权利要求1所述的天然气发动机的燃烧控制方法,其特征在于,当所述运行工况为高负荷工况时,在天然气发动机燃烧过程中依照以下原则优化压燃天然气喷射量、引燃柴油喷射量和扩散燃烧天然气喷射量三者的分配量:随着天然气发动机负荷增加,降低压燃天然气喷射量和降低引燃柴油喷射量,增加扩散燃烧天然气喷射量。3.根据权利要求2所述的天然气发动机的燃烧控制方法,其特征在于,根据预先存储的Map图确定所述运行工况、天然气发动机高负荷工况不同阶段的压燃天然气喷射量、引燃柴油喷射量和扩散燃烧天然气喷射量,所述Map图中标定有根据发动机扭矩或转速标定的天然气发动机工况,及天然气发动机不同负荷点所对应的压燃天然气喷射量、引燃柴油喷射量和扩散燃烧天然气喷射量。4.根据权利要求3所述的天然气发动机的燃烧控制方法,其特征在于,所述Map图还同时标定有天然气发动机不同负荷点压燃天然气、引燃柴油和扩散燃烧天然气三者相应的喷射压力、喷射脉宽和喷射提前角。5.根据权利要求3所述的天然气发动机的燃烧控制方法,其特征在于,所述Map图中各工况点参数的标定通过以下方法获取:S10、将计算所得的该工况点总喷射量初步配置为:初始压燃天然气喷射量、初始引燃柴油喷射量和初始扩散燃烧天然气喷射量;其中初始压燃天然气喷射量初始分配比例较低;S11、从空载开始标定,标定过程中先采用低柴油喷射压力和低天然气喷射压力,然后逐渐增加压力,在压缩冲程初期喷入初始压燃天然气喷射量的天然气,然后在压缩上止点附近喷射初始引燃柴油喷射量的引燃柴油,再间隔预定时间喷入初始扩散燃烧天然气喷射量的扩散燃烧天然气,以维持发动机稳定运行;S12、保持步骤S11中的天然气喷射压力、初始压燃天然气喷射量、初始引燃柴油喷射量和初始扩散燃烧天然气喷射量不变,逐渐提高柴油喷射前提角,直到实现压燃天然气的活性压燃模式燃烧;其中该步骤中喷射前提角的范围为上止点前5度-50度曲轴转角;S13、保持步骤S11中的天然气喷射压力和S12中喷射前提角不变,逐渐增加初始压燃天然气喷射量、调整初始引燃柴油喷射量和减小初始扩散燃烧天然气喷射量,采集发动机的示功图、经济性、排放性数据,分析发动机的压力升高率、爆震特性、最高爆压,优化确定压燃天然气喷射比例。6.根据权利要求5所述的天然气发动机的燃烧控制方法,其特征在于,所述Map图中各工况点参数的标定还包括以下步骤:S14、逐渐增加天然气、柴油的喷射压力,微调步骤S13中所获得的各喷射量和各阶段的喷射提前角,采集并对比分析发动机的各项参数,确定该工况下各段最优的喷射压力、喷射脉宽和喷射提前角。7.根据权利要求6所述的天然气发动机的燃烧控制方法,其特征在于,所述Map图中各工况点参数的标定还包括以下步骤:S15、在通过步骤S10-S14获得各工况点参数形成Map图后,再结合天然气发动机的进气温度、冷却液温度波动范围,优化全负荷范围内的MAP图。8.根据权利要求6所述的天然气发动机的燃烧控制方法,其特征在于,所述步骤S13中压燃天然气喷射比例范围为:10%-50%。9.根据权利要求4所述的天然气发动机的燃烧控制方法,其特征在于,所述Map图中喷射压力的范围为12-30MPa;所述喷射脉宽的范围为曲轴转过5度-30度的角度所对应的时间,所述喷射提前角的范围为上止点前5度-100度曲轴转角。10.根据权利要求5至9任一项所述的天然气发动机的燃烧控制方法,其特征在于, 判断天然气发动机的运行工况的当前工况参数包括天然气发动机的转速、扭矩、进气歧管温度和进气歧管压力其中一者或几者。11.根据权利要求1所述的天然气发动机的燃烧控制方法,其特征在于,所述怠速或低负荷时天然气和柴油的喷射压力范围为12-18MPa;或者/和,中等负荷中天然气和柴油的喷射压力为18-24MPa;或者/和,高负荷时天然气和柴油的喷射压力24-30MPa。12.根据权利要求1所述的天然气发动机的燃烧控制方法,其特征在于,所述压缩冲程初期具体为自进气门关闭曲轴转过10度开始至50度范围;所述压缩上止点附近位置具体为上止点前5度-20度曲轴转角范围或者上止点后5度-20度曲轴转角范围;所述隔预定时间范围为曲轴转动10度-30度所需时间。13.一种天然气发动机的燃烧控制系统,包括天然气发动机,其特征在于,还包括控制器,所述控制器包括上述权利要求1至12任一项所述的天然气发动机的燃烧控制方法。 说明书, 一种天然气发动机的燃烧控制方法及控制系统 技术领域 本发明涉及天然气发动机燃烧技术领域,具体涉及一种天然气发动机的燃烧控制方法及控制系统。 背景技术 近些年来,大面积的雾霾天气对广大居民的生产生活带来了很大的影响,危害人们的健康。其中,机动车排放的颗粒是城市雾霾的主要来源之一。 机动车根据其燃料的不同,主要包括柴油(汽油)机动车和天然气机动车两种。其中天然气机动车以天然气为燃料,由于天然气中甲烷不含碳链,燃烧过程中生成的碳烟相对少,因此机动车采用天然气为燃料可以有效控制排放,对缓解环境污染具有重要意义。 传统天然气发动机压缩比的提高受爆震的限制,同时由于天然气的燃烧速度慢,使传统燃烧方式的天然气发动机热效率及动力性都低于同排量的柴油机。 为了提高天然气发动机热效率及动力性,目前最采用的方式为在压缩上止点附近喷入少量柴油,然后天然气喷入引燃柴油火焰中,天然气被喷入的柴油引燃实现天然气的扩散燃烧,这种燃烧方式的天然气发动机不受爆震的控制,其热效率和动力性接近同排量柴油水平。 研究表明上述喷入柴油的天然气燃烧方法,其天然气在燃烧过程中仍然存在燃料的过浓区,同样生成一定量的碳烟,尾气中的PM(英文为Particulate Matter,中文为固体悬浮颗粒质量,简称PM)和PN(英文为Particulate Number,中文为固体悬浮颗粒数量,简称PN)虽然远低于柴油机,但要达到严格的EuroⅥ 排放标准,后处理系统需要与柴油同样的配置,成本较高。 发明内容 本发明提供了一种天然气发动机的燃烧控制方法,该控制方法包括以下内容: 根据天然气发动机当前工况参数,判断天然气发动机的运行工况并计算天然气发动机该工况下所需天然气和引燃柴油的总喷射量; 当所述运行工况处于怠速或低负荷时,采取直喷扩散燃烧模式,所述直喷扩散燃烧模式是指在压缩上止点位置喷射柴油,然后再喷射天然气; 当所述运行工况处于中等负荷时,采取天然气均质混合活性控制压燃模式,所述天然气均质混合活性控制压燃模式是指进气门关闭后喷射天然气,上止点前喷射柴油; 当所述运行工况处于高负荷工况时,配置所述总喷射量成三部分:压燃天然气喷射量、引燃柴油喷射量和扩散燃烧天然气喷射量;在所述天然气发动机压缩冲程初期,将所述压燃天然气喷射量的天然气喷射于燃烧腔室与其内部空气混合;在压缩上止点附近位置或较大柴油喷射提前角将所述引燃柴油喷射量的柴油喷射至所述燃烧腔室引燃预先喷射的天然气,隔预定时间后再将所述扩散燃烧天然气喷射量的天然气喷射至所述燃烧腔室; 其中所述压缩冲程初期是指以自进气门关闭曲轴至少转过10度时位置为始点。 本发明的天然气发动机的燃烧控制方法根据发动机负荷工况不同划分为三种燃烧方式,大大提高了天然气的热效率和动力性,碳烟生产量大大降低,尾气中的PM和PN远低于柴油机,可以达到严格的EuroⅥ 排放标准,无需后处理系统,降低天然气系统的生产成本。 可选的,当所述运行工况为高负荷工况时,在天然气发动机燃烧过程中依照以下原则优化压燃天然气喷射量、引燃柴油喷射量和扩散燃烧天然气喷射量三者的分配量: 随着天然气发动机负荷增加,降低压燃天然气喷射量和降低引燃柴油喷射量,增加扩散燃烧天然气喷射量。 可选的,根据预先存储的Map图确定所述运行工况、天然气发动机高负荷工况不同阶段的压燃天然气喷射量、引燃柴油喷射量和扩散燃烧天然气喷射量,所述Map图中标定有根据发动机扭矩或转速标定的天然气发动机工况,及天然气发动机不同负荷点所对应的压燃天然气喷射量、引燃柴油喷射量和扩散燃烧天然气喷射量。 可选的,所述Map图还同时标定有天然气发动机不同负荷点压燃天然气、引燃柴油和扩散燃烧天然气三者相应的喷射压力、喷射脉宽和喷射提前角。 可选的,所述Map图中各工况点参数的标定通过以下方法获取: S10、将计算所得的该工况点总喷射量初步配置为:初始压燃天然气喷射量、初始引燃柴油喷射量和初始扩散燃烧天然气喷射量;其中初始压燃天然气喷射量初始分配比例较低; S11、从空载开始标定,标定过程中先采用低柴油喷射压力和低天然气喷射压力,然后逐渐增加压力,在压缩冲程初期喷入初始压燃天然气喷射量的天然气,然后在压缩上止点附近喷射初始引燃柴油喷射量的引燃柴油,再间隔预定时间喷入初始扩散燃烧天然气喷射量的扩散燃烧天然气,以维持发动机稳定运行; S12、保持步骤S11中的天然气喷射压力、初始压燃天然气喷射量、初始引燃柴油喷射量和初始扩散燃烧天然气喷射量不变,逐渐提高柴油喷射前提角,直到实现压燃天然气的活性压燃模式燃烧;其中该步骤中喷射前提角的范围为上止点前5度-50度曲轴转角; S13、保持步骤S11中的天然气喷射压力和S12中喷射前提角不变,逐渐增加初始压燃天然气喷射量、调整初始引燃柴油喷射量和减小初始扩散燃烧天然气喷射量,采集发动机的示功图、经济性、排放性数据,分析发动机的压力升高率、爆震特性、最高爆压,优化确定压燃天然气喷射比例。 可选的,所述Map图中各工况点参数的标定还包括以下步骤: S14、逐渐增加天然气、柴油的喷射压力,微调步骤S13中所获得的各喷射量和各阶段的喷射提前角,采集并对比分析发动机的各项参数,确定该工况下各段最优的喷射压力、喷射脉宽和喷射提前角。 可选的,所述Map图中各工况点参数的标定还包括以下步骤: S15、在通过步骤S10-S14获得各工况点参数形成Map图后,再结合天然气发动机的进气温度、冷却液温度波动范围,优化全负荷范围内的MAP图。 可选的,所述步骤S13中压燃天然气喷射比例范围为:10%-50%。 可选的,所述Map图中喷射压力的范围为12-30MPa,所述喷射脉宽的范围为曲轴转过5度-30度的角度所对应的时间,所述喷射提前角的范围为上止点前5度-100度曲轴转角。 可选的, 判断天然气发动机的运行工况的当前工况参数包括天然气发动机的转速、扭矩、进气歧管温度和进气歧管压力其中一者或几者。 可选的,高负荷工况中所述扩散燃烧天然气喷射压力范围为24MPa-30MPa。 可选的,所述怠速或低负荷时天然气和柴油的喷射压力范围为12-18MPa;或者/和,中等负荷中天然气和柴油的喷射压力为18-24MPa,或者/和,大负荷时天然气和柴油的喷射压力24-30MPa。 可选的,所述压缩冲程初期具体为自进气门关闭曲轴转过10度开始至50度范围;所述压缩上止点附近位置具体为上止点前5度-20度曲轴转角范围或者上止点后5度-20度曲轴转角范围;所述隔预定时间范围为曲轴转动10度-30度所需时间。 此外,本发明还提供了一种天然气发动机的燃烧控制系统,包括天然气发动机和控制器,所述控制器包括上述任一项所述的天然气发动机的燃烧控制方法。 因本发明的天然气发动机的控制系统集成有上述控制方法,故该控制系统也具备控制方法的上述技术效果。 附图说明 图1是本发明一种天然气发动机的燃烧控制方法的流程示意图; 图2为本发明一种具体实施例中Map图的标定方法示意图。 具体实施方式 为了使本领域的技术人员更好地理解本发明的技术方案,下面结合选型设计方法、选型设计装置、附图和具体实施例对本发明作进一步的详细说明。 请参考图1和图2,图1是本发明一种天然气发动机的燃烧控制方法的流程示意图;图2为本发明一种具体实施例中Map图的标定方法示意图。 本发明提供的天然气发动机的燃料主要为天然气,其中本文中喷射的柴油主要起到引燃天然气的作用。天然气发动机系统除了包括天然气发动机之外,还包括天然气压力调整装置、高压天然气管路、进气歧管、柴油燃料管路、柴油高压油泵、中冷器、涡轮增压器等部件。关于天然气发动机系统的具体结构本文不做重点介绍,相关部件的连接关系和结构可以参考现有技术,本文主要介绍天然气发动机的燃烧控制方法。 本发明中天然气发动机的燃烧控制方法包括以下内容: S1、根据天然气发动机当前工况参数,判断天然气发动机的运行工况并计算天然气发动机该工况下所需天然气和引燃柴油的总喷射量; 发动机的运行工况可以大致划分为三个阶段:怠速及低负荷、中负荷、高负荷。这三个阶段的划分可以通过采集天然气发动机的工况参数而确定,当工况参数包括天然气发动机的转速、扭矩、进气歧管温度和进气歧管压力其中一者或几者。怠速和低负荷通常指节气门开度低于25%,中负荷是指节气门开度范围25%-75%(或80%),高负荷是指节气门开度高于75%(或80%)。当然,不同发动机可能对于以上三阶段负荷的定义略有不同,这并不妨碍本领域内技术人员对本文技术方案的理解和实施。 上述天然气和引燃柴油的总喷射量是指天然气的喷射量和柴油的喷射量之和。 S2、当运行工况处于怠速或低负荷时,采取直喷扩散燃烧模式,直喷扩散燃烧模式是指在压缩上止点位置喷射柴油,然后再喷射天然气; 当然,在压缩上止点可以通过喷射一次或者几次实现柴油的喷射量需求,同理天然气的喷射量也可以采取上述方式。天然气的喷射时刻可以为喷射完柴油后的预定间隔时间后,天然气喷入柴油火焰中,天然气被柴油火焰引燃,天然气边喷射边燃烧。怠速和低负荷工作时,过量空气系数高、燃烧温度低,NOx及碳烟生产量少,采用这种燃烧方式可以使发动机稳定运行。 当运行工况处于中等负荷时,采取天然气均质混合活性控制压燃模式,所述天然气均质混合活性控制压燃模式是指进气门关闭后喷射天然气,上止点前喷射柴油; 中等负荷压缩温度升高,采用天然气均质混合活性控制压燃模式可以提高热效率并降低排放,这种控制策略主要为在压缩冲程早期喷射天然气,天然气和燃烧缸内空气充分混合,然后以较大的柴油喷射提前角喷入柴油,柴油压缩着火后燃烧缸内的压力温度迅速升高,预混天然气/空气被压燃烧,实现低温燃烧循环,同时降低NOx、碳烟并提高热效率。鉴于均质混合活性控制压燃方式的燃烧始点的受进气温度的影响,为了使天然气发动机具有热区、寒区良好的适应性,中冷后温度控制单元根据中冷前温度传感器、中冷前压力传感器、中冷后温度传感器和中冷后压力传感器采集的数据,根据控制器的信号控制中冷器的冷却强度,控制系统通过控制中冷器的冷却强度使发动机在包括寒区、热区等地域运行时调整中冷后的温度并和柴油喷射时刻配合,使燃烧始点具有良好的可控性,并低负荷拓宽该燃烧模式。 当所述运行工况为高负荷工况时,配置总喷射量成三部分:压燃天然气喷射量、引燃柴油喷射量和扩散燃烧天然气喷射量;在天然气发动机压缩冲程初期,将压燃天然气喷射量的天然气喷射于燃烧腔室与其内部空气混合;在压缩上止点附近位置或较大柴油喷射提前角将引燃柴油喷射量的柴油喷射至燃烧腔室引燃预先喷射的天然气,隔预定时间后再将扩散燃烧天然气喷射量的天然气喷射至燃烧腔室。 本文中,压缩冲程初期以自进气门关闭曲轴至少转过10度时位置为始点。也就是说,压缩冲程初期的起始点自进气门关闭曲轴转过大于等于10度开始,压缩冲程初期可以以曲轴转过的角度为衡量,压缩冲程初期可以为自始点曲轴转过预定角度的范围。例如压缩冲程初期的范围可以为自进气门关闭曲轴角度10度至曲轴角度50度,即自进气门关闭后曲轴转过10度开始,至曲轴转过50度区间定义为压缩冲程初期。 也就是说,当运行工况为高负荷时,分三个阶段向燃烧室内部喷射燃料,第一次喷射天然气、喷射柴油、第二次喷射天然气;第一次喷射天然气与燃烧缸内的空气充分混合后,再在压缩上止点附近位置喷射柴油,柴油压缩着火后缸内压力温度迅速升高,第一次喷射的天然气和空气的混合气体迅速燃烧,实现活性压燃,这时再第二次喷射天然气于燃烧缸的燃烧火焰中,第二次喷入的天然气实现扩散燃烧。第一次喷射天然气可以在进气门关闭后喷射,第二次喷射天然气上止点前30度-5度曲轴转角。上止点前30度-5度是指在到达上止点之前,曲轴需要转动30度至5度才能到达上止点位置。本文中曲轴转角的理解与此理解相同。 与上述方式不同的是,柴油的喷射时刻不同,柴油可以在上止点附近喷射柴油,天然气的喷射方式相同。 高负荷工况时,在发动机一个工作循环内实现了天然气的活性压燃和扩散燃烧的有机结合。由于天然气活性压燃热效率高于扩散燃烧,使这种燃烧方式的热效率高于现有天然气缸内高压直喷扩散燃烧方式,天然气活性压燃属于低温燃烧范畴,可以同时减少NOx和碳烟排放,使这种燃烧方式的排放也优于天然气扩散燃烧方式;独立的天然气活性压燃方式由于受压力升高率的限制使用范围较窄,不同应用于大负荷工况,该新型燃烧方式燃烧后期耦合了扩散燃烧,降低了大负荷时的放热速度和压力升高率,同样消除了爆震的限制,可以继续采用与柴油机同样的压缩比,标定过程中合理调整活性压燃的权重,使其可以拓宽运行在发动机大负荷点。 从以上描述可知,本发明的天然气发动机的燃烧控制方法根据发动机负荷工况不同划分为三种燃烧方式,大大提高了天然气的热效率和动力性,碳烟生产量大大降低,尾气中的PM和PN远低于柴油机,可以达到严格的EuroⅥ 排放标准,无需后处理系统,降低天然气系统的生产成本。 上述各实施例,当运行工况为高负荷工况时,在天然气发动机燃烧过程中依照以下原则优化压燃天然气喷射量、引燃柴油喷射量和扩散燃烧天然气喷射量三者的分配量: 随着天然气发动机负荷增加,降低压燃天然气喷射量和降低引燃柴油喷射量,增加扩散燃烧天然气喷射量。 进一步地,根据预先存储的Map图确定运行工况,天然气发动机高负荷工况不同阶段的压燃天然气喷射量、引燃柴油喷射量和扩散燃烧天然气喷射量, Map图中标定有根据发动机扭矩或转速标定的天然气发动机工况,并且天然气发动机不同负荷点所对应的压燃天然气喷射量、引燃柴油喷射量和扩散燃烧天然气喷射量。 上述各实施例中的Map图还同时标定有天然气发动机不同负荷点压燃天然气、引燃柴油和扩散燃烧天然气三者相应的喷射压力、喷射脉宽和喷射提前角。 上述各Map图中各工况点参数的标定通过以下方法获取: S10、将计算所得的该工况点总喷射量初步配置为:初始压燃天然气喷射量、初始引燃柴油喷射量和初始扩散燃烧天然气喷射量;其中初始压燃天然气喷射量初始分配比例较低; S11、从空载开始标定,标定过程中先采用低柴油喷射压力和低天然气喷射压力,然后逐渐增加喷射压力,在压缩冲程初期喷入初始压燃天然气喷射量的天然气,然后在压缩上止点附近喷射初始引燃柴油喷射量的引燃柴油,再间隔预定时间喷入的初始扩散燃烧天然气喷射量扩散燃烧天然气,以维持发动机稳定运行; 上述的低柴油喷射压力和低天然气喷射压力的最小值为能够喷射出柴油和天然气的压力值。 S12、保持步骤S11中的天然气喷射压力、初始压燃天然气喷射量、初始引燃柴油喷射量和初始扩散燃烧天然气喷射量不变,逐渐提高柴油喷射前提角,直到实现压燃天然气的活性压燃模式燃烧; 其中该步骤中喷射前提角的范围为上止点前5度-50度曲轴转角;也就是说,喷射前提角可以曲轴从上止点前50度转动至上止点前5度过程中变化。 S13、保持步骤S11中的天然气喷射压力和S12中喷射前提角不变,逐渐增加初始压燃天然气喷射量、调整初始引燃柴油喷射量和减小初始扩散燃烧天然气喷射量,采集发动机的示功图、经济性、排放性数据,分析发动机的压力升高率、爆震特性、最高爆压,优化确定压燃天然气喷射比例。优化确定压燃天然气喷射比例,也就是说,确定高压工况点的压燃天然气喷射量、引燃柴油喷射量和扩散燃烧天然气喷射量。调整初始引燃柴油喷射量可以增大或者减小,已与其他工况参数共同选取合适的天然气喷射比例,大量实验证明天然气喷射比例优选在10%-50%之间,燃烧控制系统的参数最佳。 当然,为了精确高压工况点的各阶段的喷射量,Map图中各工况点参数的标定还包括以下步骤: S14、逐渐增加天然气、柴油的喷射压力,微调步骤S13中所获得的各喷射量和各阶段的喷射提前角,采集并对比分析发动机的各项参数,确定该工况下各段最优的喷射压力、喷射脉宽和喷射提前角。 上述步骤之间不存在绝对的顺序关系,本文仅是示出了一种具体的实施方式。 进一步地,上述各实施例中的Map图中各工况点参数的标定还可以包括以下步骤: S15、在通过步骤S10-S14获得各工况点参数形成Map图后,再结合天然气发动机的进气温度、冷却液温度波动范围,优化全负荷范围内的MAP图。 也就是说,通过优化全负荷范围内的工况点参数值,使天然气发动机的进气温度、冷却液温度处于波动范围内,以满足天然气发动机较佳工况运行。 上述各实施例中,高负荷工况中所述扩散燃烧天然气喷射压力范围为24MPa-30MPa。 上述各实施例中,怠速或低负荷时天然气和柴油的喷射压力范围为12-18MPa;或者/和,中等负荷中天然气和柴油的喷射压力18-24MPa。 上述各实施例中,Map图中喷射压力的范围为12-30MPa,所述喷射脉宽的范围为曲轴转过5度-30度的角度所对应的时间,所述喷射提前角的范围为上止点前5度-100度曲轴转角。 当然,上述各范围为维持天然气发动机工作的较佳范围,其具体数值允许有一定的波动。 在上述控制方法的基础上,本发明还提供了一种天然气发动机的燃烧控制系统,包括天然气发动机和控制器,控制器包括上述任一实施例所述的天然气发动机的燃烧控制方法。 其中控制器可以为车辆的ECU。 因本发明的天然气发动机的控制系统集成有上述控制方法,故该控制系统也具备控制方法的上述技术效果。 以上仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

文章推荐:

一种基于生物技术的多级发酵装置

智能笔记本

陶瓷茶杯(一辈子顺杯)

一种基于法律知识图谱的裁判文书相似性判断方法及系统

一种风光热电力互补系统

发表评论